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Motivation

RHIC → QCD at T >∼ (a few) 100 MeV

asymptotic freedom → weak coupling expansion

slow convergence, non-trivial structure

problematic dof's are identified
• soft modes p ∼ gT → odd powers in g

• ultrasoft modes p ∼ g2T → non-pert coeffs

general picture
• perturbation theory OK for parametrically hard scales p ∼ 2πT

• soft and ultrasoft scales need improved analytic schemes, or non-pert treatment

• starting point: dim red eff. theory, or HTL eff. theory

quantitative evidence:
• pick some simple observables

• compare 4d lattice vs soft/ultrasoft eff. theory

• e.g. static correlation lengths → agreement down to T ∼ 2Tc
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Thermal pressure p(T ): 4d vs 3d

pQCD(T ) ≡ lim
V→∞

T

V
ln

∫
D[Aa

µ, ψ, ψ̄] exp
(
−1
h̄

∫ h̄/T

0

dτ

∫
d3−2εxLQCD

)
LQCD =

1
4
F a

µνF
a
µν + ψ̄γµDµψ + LGF + LFP
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Thermal pressure p(T ): status

For Nf = 0, Nc = 3, write pQCD = 8π2T 4

45 {ph + ps + pus}, where

ph = 1− 0.2 g̃2 + 0.92 g̃4 + (#0 − 0.25) g̃6

ps = 0.37 m̃E
3 + 0.38 ln (0.11 m̃E) g̃E2 m̃E

2 − 0.54 g̃E4 m̃E

− 0.21 ln (0.32 m̃E) g̃E6 − 0.14 g̃E4 m̃E
2

pus = g̃M
6
[
−0.072 ln

(
1.3 g̃M2

)
± 0.02nspt ± 0.02stat

]
with couplings

g̃ ∼ 5
√

3
4π

g

m̃E
2 = g̃2 + 0.24 g̃4

g̃E
2 = g̃2 + 0.18 g̃4 + 0.083 g̃6

g̃M
2 = g̃E

2

[
1− 0.029

g̃E
2

m̃E
+ 0.0071

g̃E
4

m̃E
2

]
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Thermal pressure p(T ): status

For Nf = 0, Nc = 3, write pQCD = 8π2T 4

45 {ph + ps + pus}, where
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pQCD/pSB vs ln (T/Tc), for #0 = −0.26, ..., 0.64:

1 2 3 4 5

0.2

0.4

0.6

0.8

1

6



Spatial string tension σs

study an observable allowing an unambiguous comparison

take rectangular Wilson loop Ws(R1, R2) in (x1, x2) plane

def potential Vs(R1) = − limR2→∞
1

R2
lnWs(R1, R2)

def spatial string tension σs ≡ limR1→∞
Vs(R1)

R1

σs has been measured in SU(3) on the (4d) lattice

as e.g.
√

σs

T = φ
(

T
Tc

)
[Boyd et al, 96]

aim: get the eff. theory prediction for σs

• effective theory setup

• σs from 3d lattice

• perturbative matching to 4d

• ΛMS vs Tc
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Effective theory setup: QCD → EQCD

high T: QCD dynamics contained in 3d EQCD

LE =
1
2
Tr F 2

kl + Tr [Dk, A0]2 +m2
ETr A

2
0 + λ

(1)
E (Tr A2

0)
2 + λ

(2)
E Tr A4

0 + ...

matching coefficients [E. Braaten, A. Nieto, 95; M. Laine, YS, 05]

m2
E = T 2

{
#g2 + #g4 + ...

}
λ

(1/2)
E = T

{
#g4 + #g6 + ...

}
g2
E = T

{
g2 + #g4 + #g6 + ...

}
higher order operators do not (yet) contribute [S. Chapman, 94; Kajantie et al, 97, 02]

δLE ∼ g2 DkDl

(2πT )2
LE ∼ g2 (g2T )2

(2πT )2
LE (i.e. g8 for g2

E )
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Digression: g2
E numerically

in practice, need to renormalize: g2 = g2(µ̄) is MS coupling

from soln of RGE at 2-loop level, define as usual

ΛMS ≡ lim
µ̄→∞

µ̄
[
b0g

2(µ̄)
]−b1/2b2

0
exp

[
− 1

2b0g2(µ̄)

]

hence g2
E = g2

E (µ̄,ΛMS, T ) = T φ
(

µ̄
T ,

T
ΛMS

)



Digression: g2
E numerically

in practice, need to renormalize: g2 = g2(µ̄) is MS coupling

from soln of RGE at 2-loop level, define as usual

ΛMS ≡ lim
µ̄→∞

µ̄
[
b0g

2(µ̄)
]−b1/2b2

0
exp

[
− 1

2b0g2(µ̄)

]

hence g2
E = g2

E (µ̄,ΛMS, T ) = T φ
(

µ̄
T ,

T
ΛMS

)

ren. scale dependence
• formally, µ̄ dependence is of higher order

• numerically, there is µ̄ dependence

• free to choose some optimisation procedure, e.g. PMS

. choose µ̄opt at extremum of 1-loop

. vary scale within µ̄ = (0.5...2.0)× µ̄opt
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Digression: g2
E numerically
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Effective theory setup: QCD → EQCD → MQCD

3d EQCD is contained in 3d MQCD

LM =
1
2
Tr F 2

kl + ...

matching coefficient [P. Giovannangeli, 04; M. Laine, YS, 05]

g2
M = g2

E

{
1 + #

g2
E

mE
+ #

g4
E

m2
E

+ #
g2
Eλ

(1/2)
E

m2
E

+ ...

}

expansion converges extremely well, even close to Tc

can safely ignore higher loop corrections for g2
M

higher order operators could contribute

δLM ∼ g2
E

DkDl

m3
E

LM ∼ g2
E

(g2T )2

m3
E

LM
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Effective theory prediction for σs

observable σs exists in 3d SU(3) gauge theory (MQCD)
• dimensionful gauge coupling → σs = #g4

M

• most recent lattice data
√

σs

g2
M

= 0.553(1) [M. Teper, B. Lucini, 02]
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• dimensionful gauge coupling → σs = #g4

M

• most recent lattice data
√

σs

g2
M

= 0.553(1) [M. Teper, B. Lucini, 02]

to compare with 4d lattice, need to relate g2
M and T

•
√

σs
T = 0.553(1)

g2
M

g2
E

g2
E

T = φ

„
T

Λ
MS

«

finally, need to relate ΛMS and Tc

• e.g. via T = 0 string tension Tc
Λ
MS

= Tc/
√

σ

Λ
MS

/
√

σ
= 1.16(4) [Teper et al, 03; Bali, Schilling, 92]

• e.g. via Sommer scale Tc
Λ
MS

=
r0Tc

r0Λ
MS

= 1.25(10) [S. Necco, 03; ALPHA coll, 98]

• e.g. via scaling at crit. point Tc
Λ
MS

= 1.15(5) [S. Gupta, 00]

• to be conservative, consider the interval 1.10 ...1.35
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Spatial string tension σs: 4d vs 3d

1.0 2.0 3.0 4.0 5.0
T / Tc
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T
/σ

s1/
2
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1-loop

[4d lattice data from Boyd et al, 96] (cave: 323 × 8, no cont. extrapolation: Nτ = 8, T = 1/aNτ )

parameter-free comparison!

support for hard/soft+ultrasoft picture of thermal QCD
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Quark mass effects in p(T )

• at mq = 0: know Nf dependence to high order

• ⇒ interpolate between integer Nf ?

• better: take gluonic contributions to highest available order
consider effects of quarks with physical masses at NLO

. ``correction factor''
T 4

h
αE1+g2αE2

i
(Nf )

T 4[αE1+g2αE2](0)

αE1 = dA

π2

45
+ 4CA

NfX
i=1

F1

„
m2

i

T 2
,
µi

T

«

αE2 = −
dACA

144
− dA

NfX
i=1


1

6
F2

„
m2

i

T 2
,
µi

T

«»
1 + 6F2

„
m2

i

T 2
,
µi

T

«–
+

+
m2

i

4π2T 2

„
3 ln

µ̄

mi

+ 2

«
F2

„
m2

i

T 2
,
µi

T

«
−

2m2
i

T 2
F4

„
m2

i

T 2
,
µi

T

«ff
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Quark mass effects in p(T )

• the Fi are integrals involving nF(x) = 1
ex+1

limits m → 0, T → 0 known analytically
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• estimate numerical importance of correction factor: take running masses

• ⇒ O(g2) correction factors are a few % only

• IF charm quark thermalizes in heavy ion coll., THEN it has effects at relatively
low temperatures
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Quark mass effects in p(T )

• for phenomenological applications, re-write derivatives of pressure as
equation of state w(T ) = p(T )

e(T ) = p(T )

Tp′(T )−p(T )

sound speed squared c2
s(T ) = p′(T )

e′(T )
= p′(T )

Tp′′(T )

• then, e.g. from Einstein eqs, 1
T ∂tT = −

√
24π

mPl

q
p(T )
w(T ) c2

s(T )
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• for phenomenology, tune ΛMS by fitting to hadron resonance gas [Karsch et al 03]

• in shaded region, only lattice can give a quantitative result
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Conclusions

• thermodynamic quantities of QCD are relevant for cosmology and heavy ion
collisions

• these quantities can be determined numerically at T ∼ 200 MeV, and via effective
field theory at T � 200 MeV

• effective field theory opens up tremendous opportunities: analytic treatment of
fermions (incl. physical m, µ), universality, superrenormalizabilty

• for precise results, sometimes need very deep expansions

• setup is systematic, and testable
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